Iris Recognition Reliability: Authenticity Assessment + Influence of Illuminant Wavelength

Adam Czajka

Biometric Laboratories

NASK & Warsaw University of Technology
adam.czajka@nask.pl

International Biometric Performance Conference March 5-9, 2012, Gaithersburg

Agenda

- Authenticity assessment
 - Frequency analysis
 - Method variants
 - Selected results and conclusions
- Influence of Illumination Wavelength
 - Equipment and database
 - Selected results and conclusions

Wavelength Frequency analysis Variants Results & conclusions

Frequency analysis for authenticity assessment

Images and corresponding amplitude spectra for authentic iris (left) vs. iris printout (right)

- 1. Straightforward method for detection of regular occurrence of dots within the image
- 2. Image used for recognition may be employed (i.e. no additional hardware or new capture procedures are required)
- 3. (Rough) iris segmentation is required: 'easy' for authentic irises, unpredictable for artefacts

Method variants

Frequency windows

A: Two fixed windows

$$q_A = \frac{h(f_1, f_2)}{h(f_0, f_1)}$$

B: One fixed and one moving window

$$q_B = \max_{f_1} \frac{h(f_1, f_1 + df)}{h(f_0, f_0 + df)}$$

where f_0, f_1 are parameters in A, f_0, df are parameters in B, h calculates maximum (or average) values within frequency window (raw and log amplitudes are considered)

'Alien frequencies' expected in the inner or the outer window

Method variants

ROI selection

Iris printout image

Cropped (C)

Cropped and masked (CM)

Segments (S)

Databases

- 1. Equipment
 - DB1: IrisCUBE (prototype) camera, HP LaserJet 1100
 - DB2, DB3, DB4: IrisGuard AD100, Lexmark 534
 - DB5: IrisGuard AD100, Lexmark 534 & HP LaserJet 1320
- 2. Approximately 700 images of iris printouts (and images of the corresponding authentic eyes)
 - all printouts used to successfully spoof an example commercial camera

Selected results: best accuracy (EER)

Winner: fixed window (A), raw amplitude, cropped and masked (all databases mixed)

Selected results: best accuracy (EER)

Winner: fixed window (A), raw amplitude, cropped and masked

best FAR (FNDR) for FRR (FADR) = 0

Winner: moving window (B), log amplitude, cropped and masked (all databases mixed)

best FAR (FNDR) for FRR (FADR) = 0

Winner: moving window (B), log amplitude, cropped and masked

Conclusions

- 1. Possible usage: authenticity (liveness) detection or quality assessment
- 2. Difficult to offer low FRR (FADR) if zero FAR (FNDR) is demanded
- 3. May offer low FAR (FNDR) if zero FRR (FADR) is demanded (detection of approx. 95% of artefacts used in successful spoofing attacks)
- 4. Sensitive to segmentation errors (artefact appearance difficult to be predicted)

Agenda

- Authenticity assessment
 - Frequency analysis
 - Method variants
 - Selected results and conclusions
- 2 Influence of Illumination Wavelength
 - Equipment and database
 - Selected results and conclusions

Equipment

- 1. Analogue camera with increased IR sensitivity
- Fixed lens with IR filter (100% transparency for wavelengths higher than 720 nm)
- 3. Two illuminants
 - placed equidistantly on the left and right sides of the lens
 - containing 14 sections of IR LEDs (each section consists of 3 LEDs and corresponds to one wavelength)
 - the spectral bandwidth of the illuminating diodes at 50% ("half width"):
 - 30nm for lambda 740-780 nm.
 - 35 nm for lambda 810-840 nm.
 - 40 nm for lambda 850-870 nm. and
 - 75-80 nm for lambda 890-905 nm.
 - LEDs power compliant with IEC 60825-1 (Ed. 1.2)

Equipment

ILR, ILL: illuminants (right, left)

CL: camera lens

CLA: line perpendicular to the lens axis ILA: line perpendicular to the illuminant axis

 $d_{\text{CL-ILR}} = d_{\text{CL-ILL}} \approx 60 \text{mm} \text{ (adjustable)}$ $d_{\text{DV}} \approx 15 \text{mm}$

 $d_{DH} \approx 10\text{-}15 mm$

 β : adjustable for best iris illumination

Database

Images for 50 different eyes (8 images per eye; a subset of a larger set for 200 different eyes was used)

Median EER (%) for matcher No. 1 (academic)

Median EER (%) interpolated every 10nm for matcher No. 1 (academic)

EER boxplot for matcher No. 1 (academic) when $\lambda_1 = \lambda_2$

Legend: the bottom and top of the boxes: 25th and 75th percentile; red band near the middle: median value; whiskers: 1.5 IQR; plus signs: outliers

Median EER (%) for matcher No. 2 (commercial)

Median EER (%) interpolated every 10nm for matcher No. 2 (commercial)

EER boxplot for matcher No. 2 (commercial) when $\lambda_1 = \lambda_2$

Legend: the bottom and top of the boxes: 25th and 75th percentile; red band near the middle: median value; whiskers: 1.5 IQR; plus signs: outliers

Conclusions

- 1. Recognition performance for different wavelengths seems to be uneven
- 2. The interoperability among capture systems using different illumination wavelengths might not be guaranteed
- 3. Need for evaluations on larger datasets (ongoing) and for greater number of matchers (any parties willing to cooperate are welcome)

Contact

Adam Czajka adam.czajka@nask.pl

Biometric Labratories Research and Academic Computer Network (NASK) Warsaw, Poland

Biometrics and Machine Learning Group Warsaw University of Technology Warsaw, Poland

